Ask a Question or Help other Players by Answering the Questions on the List Below:
Dots and boxes is a simple game with a simple goal: whoever 'owns' the most boxes at the end of the game wins. You and your opponent take turns drawing horizontal or vertical lines to connect the boxes. When someone draws a line that completes a box, you write your initial inside to win the box.
Rate this app:
More details
For Android: 4.1 and up | Guide: Dots and Boxes - Squares cheats tutorial |
When updated: 2018-03-08 | Star Rating: 3.6 |
Name: Dots and Boxes - Squares hack for android | Extension: Apk |
Author: Roghan Games | File Name: com.han.dotsandboxes |
Current Version: 3.0.3 | User Rating: Everyone |
Downloads: 1000000-5000000 | Version: mod, apk, unlock |
System: Android | Type: Education |
Share Dots and Boxes - Squares Cheats Guides Hints And Tutorials - Best Tactics from Users below.
Dots and Boxes - Squares Tricks and Codes:
How To Win Dots And Boxes On Game Pigeon Tn
Add your tips
Hints and Tips:
Glitches:
Codes:
Guide:
Easter Eggs:
Advice for new users:
Dots and Boxes - Squares Hack Cheats Codes Tips Tricks Advices for New Users and Q&A!
Add your questions or answers
Q: How to get the best score?
Q: Do you know more hacks or tricks?
Q: What is your strategy?
How To Win Dots And Boxes On Game Pigeon Forge
Watch Dots and Boxes - Squares videoreviews, gameplays, videoinstructions, tutorials, guides, tips and tricks recorded by users, pro players and testers.Dots and Boxes - Squares Gameplay, Trailers and Related Videos
Watch How to always win at Dots and Boxes - Numberphile video.
Watch How to Play and Win in DOTS Every Time video.
Watch Dots and Boxes Squares Brain Games Android Games Play video.
Watch dots and boxes Minecraft redstone mini game with score board video.
About the application:
The classic Dots and Boxes mini game to remember childhood. Also known as Dots and Boxes, Boxes, Squares, Paddocks, Square-it, Dots and Dashes, Dots, Smart Dots, Dot Boxing, ou Dot Mini game+ HOW TO PLAY +The goal in the Dots and Boxes mini game is to always close the square. At each round, a user chooses where to draw a line between two adjacent points. The user scores a point when he closes a square, in which case he continues to play.+ OBJECTIVE +Beat the user who closes the biggest number of squares.+ FEATURES +In the mini game of dots you can challenge the computer, or you can play versus your friends!This mini game includes single and multiplayer. Attractive design to please kids.
Dots and Boxes - Squares Hack - Gallery:
Dots and Boxes is a pencil-and-paper game for two players (sometimes more). It was first published in the 19th century by French mathematician Édouard Lucas, who called it la pipopipette.[1] It has gone by many other names,[2] including the game of dots,[3]dot to dot grid,[4]boxes,[5] and pigs in a pen.[6]
The game starts with an empty grid of dots. Usually two players take turns adding a single horizontal or vertical line between two unjoined adjacent dots. A player who completes the fourth side of a 1×1 box earns one point and takes another turn. (A point is typically recorded by placing a mark that identifies the player in the box, such as an initial.) The game ends when no more lines can be placed. The winner is the player with the most points.[2][7] The board may be of any size grid. When short on time, or to learn the game, a 2×2 board (3×3 dots) is suitable.[8] A 5×5 board, on the other hand, is good for experts.[9]
The diagram on the right shows a game being played on a 2×2 board (3×3 dots). The second player ('B') plays a rotated mirror image of the first player's moves, hoping to divide the board into two pieces and tie the game. But the first player ('A') makes a sacrifice at move 7 and B accepts the sacrifice, getting one box. However, B must now add another line, and so B connects the center dot to the center-right dot, causing the remaining unscored boxes to be joined together in a chain (shown at the end of move 8). With A's next move, A gets all three of them and ends the game, winning 3–1.
Strategy[edit]
For most novice players, the game begins with a phase of more-or-less randomly connecting dots, where the only strategy is to avoid adding the third side to any box. This continues until all the remaining (potential) boxes are joined together into chains – groups of one or more adjacent boxes in which any move gives all the boxes in the chain to the opponent. At this point, players typically take all available boxes, then open the smallest available chain to their opponent. For example, a novice player faced with a situation like position 1 in the diagram on the right, in which some boxes can be captured, may take all the boxes in the chain, resulting in position 2. But, with their last move, they have to open the next, larger chain, and the novice loses the game.[2][10]
A more experienced player faced with position 1 will instead play the double-cross strategy, taking all but 2 of the boxes in the chain and leaving position 3. The opponent will take these two boxes and then be forced to open the next chain. By achieving position 3, player A wins. The same double-cross strategy applies no matter how many long chains there are: a player using this strategy will take all but two boxes in each chain and take all the boxes in the last chain. If the chains are long enough, then this player will win.
The next level of strategic complexity, between experts who would both use the double-cross strategy (if they were allowed to), is a battle for control: An expert player tries to force their opponent to open the first long chain, because the player who first opens a long chain usually loses.[2][10] Against a player who does not understand the concept of a sacrifice, the expert simply has to make the correct number of sacrifices to encourage the opponent to hand him the first chain long enough to ensure a win. If the other player also sacrifices, the expert has to additionally manipulate the number of available sacrifices through earlier play.
In combinatorial game theory, dots and boxes is an impartial game and many positions can be analyzed using Sprague–Grundy theory. However, Dots and Boxes lacks the normal play convention of most impartial games (where the last player to move wins), which complicates the analysis considerably.[2][10]
Unusual grids and variants[edit]
Dots and Boxes need not be played on a rectangular grid – it can be played on a triangular grid or a hexagonal grid.[2]
Dots and Boxes has a dual graph form called 'Strings-and-Coins'. This game is played on a network of coins (vertices) joined by strings (edges). Players take turns cutting a string. When a cut leaves a coin with no strings, the player 'pockets' the coin and takes another turn. The winner is the player who pockets the most coins. Strings-and-Coins can be played on an arbitrary graph.[2]
A variant Kropki played in Poland allows a player to claim a region of several squares as soon as its boundary is completed.[11]
In analyses of Dots and Boxes, a game board that starts with outer lines already drawn is called a Swedish board while the standard version that starts fully blank is called an American board. An intermediate version with only the left and bottom sides starting with drawn lines is called an Icelandic board.[12]
A game called Trxilt combines some elements of Dots and Boxes with some elements of Chess.
References[edit]
- ^Lucas, Édouard (1895), 'La Pipopipette: nouveau jeu de combinaisons', L'arithmétique amusante, Paris: Gauthier-Villars et fils, pp. 204–209.
- ^ abcdefgBerlekamp, Elwyn R.; Conway, John H.; Guy, Richard K. (1982), 'Chapter 16: Dots-and-Boxes', Winning Ways for your Mathematical Plays, Volume 2: Games in Particular, Academic Press, pp. 507–550.
- ^Holladay, J. C. (1966), 'A note on the game of dots', American Mathematical Monthly, 73 (7): 717–720, doi:10.2307/2313978, JSTOR2313978, MR0200068.
- ^Swain, Heather (2012), Play These Games: 101 Delightful Diversions Using Everyday Items, Penguin, pp. 160–162, ISBN9781101585030.
- ^Solomon, Eric (1993), 'Boxes: an enclosing game', Games with Pencil and Paper, Dover Publications, Inc., pp. 37–39, ISBN9780486278728. Reprint of 1973 publication by Thomas Nelson and Sons.
- ^King, David C. (1999), Civil War Days: Discover the Past with Exciting Projects, Games, Activities, and Recipes, American Kids in History, 4, Wiley, pp. 29–30, ISBN9780471246121.
- ^Berlekamp, Elwyn (2000), The Dots-and-Boxes Game: Sophisticated Child's Play, AK Peters, Ltd, ISBN1-56881-129-2.
- ^Berlekamp, Conway & Guy (1982), 'the 4-box game', pp. 513–514.
- ^Berlekamp (2000), p. xi: [the 5×5 board] 'is big enough to be quite challenging, and yet small enough to keep the game reasonably short'.
- ^ abcWest, Julian (1996), 'Championship-level play of dots-and-boxes'(PDF), in Nowakowski, Richard (ed.), Games of No Chance, Berkeley: MSRI Publications, pp. 79–84.
- ^Grzegorzka, Jakub; Dyda. 'Dots - rules of the game'. zagram.org. Retrieved 2017-11-27.
- ^Wilson, David, Dots-and-Boxes Analysis Results, University of Wisconsin, retrieved 2016-04-07.
External links[edit]
- Barile, Margherita. 'Dots and Boxes'. MathWorld.
- Ilan Vardi, Dots Strategies.